Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Turvey-Shapley Value Method for Distribution Network Cost Allocation (1909.00957v1)

Published 3 Sep 2019 in eess.SY and cs.SY

Abstract: This paper proposes a novel cost-reflective and computationally efficient method for allocating distribution network costs to residential customers. First, the method estimates the growth in peak demand with a 50% probability of exceedance (50POE) and the associated network augmentation costs using a probabilistic long-run marginal cost computation based on the Turvey perturbation method. Second, it allocates these costs to customers on a cost-causal basis using the Shapley value solution concept. To overcome the intractability of the exact Shapley value computation for real-world applications, we implement a fast, scalable and efficient clustering technique based on customers' peak demand contribution, which drastically reduces the Shapley value computation time. Using customer load traces from an Australian smart grid trial (Solar Home Electricity Data), we demonstrate the efficacy of our method by comparing it with established energy- and peak demand-based cost allocation approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.