Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

HishabNet: Detection, Localization and Calculation of Handwritten Bengali Mathematical Expressions (1909.00823v1)

Published 2 Sep 2019 in cs.CV and cs.LG

Abstract: Recently, recognition of handwritten Bengali letters and digits have captured a lot of attention among the researchers of the AI community. In this work, we propose a Convolutional Neural Network (CNN) based object detection model which can recognize and evaluate handwritten Bengali mathematical expressions. This method is able to detect multiple Bengali digits and operators and locate their positions in the image. With that information, it is able to construct numbers from series of digits and perform mathematical operations on them. For the object detection task, the state-of-the-art YOLOv3 algorithm was utilized. For training and evaluating the model, we have engineered a new dataset 'Hishab' which is the first Bengali handwritten digits dataset intended for object detection. The model achieved an overall validation mean average precision (mAP) of 98.6%. Also, the classification accuracy of the feature extractor backbone CNN used in our model was tested on two publicly available Bengali handwritten digits datasets: NumtaDB and CMATERdb. The backbone CNN achieved a test set accuracy of 99.6252% on NumtaDB and 99.0833% on CMATERdb.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube