Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Abstraction-Free Method for Multi-Robot Temporal Logic Optimal Control Synthesis (1909.00526v4)

Published 2 Sep 2019 in cs.RO

Abstract: The majority of existing Linear Temporal Logic (LTL) planning methods rely on the construction of a discrete product automaton, that combines a discrete abstraction of robot mobility and a B$\ddot{\text{u}}$chi automaton that captures the LTL specification. Representing this product automaton as a graph and using graph search techniques, optimal plans that satisfy the LTL task can be synthesized. However, constructing expressive discrete abstractions makes the synthesis problem computationally intractable. In this paper, we propose a new sampling-based LTL planning algorithm that does not require any discrete abstraction of robot mobility. Instead, it incrementally builds trees that explore the product state-space, until a maximum number of iterations is reached or a feasible plan is found. The use of trees makes data storage and graph search tractable, which significantly increases the scalability of our algorithm. To accelerate the construction of feasible plans, we introduce bias in the sampling process which is guided by transitions in the B$\ddot{\text{u}}$chi automaton that belong to the shortest path to the accepting states. We show that our planning algorithm, with and without bias, is probabilistically complete and asymptotically optimal. Finally, we present numerical experiments showing that our method outperforms relevant temporal logic planning methods.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.