Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Toward Understanding The Effect Of Loss function On Then Performance Of Knowledge Graph Embedding (1909.00519v2)

Published 2 Sep 2019 in cs.AI and cs.CL

Abstract: Knowledge graphs (KGs) represent world's facts in structured forms. KG completion exploits the existing facts in a KG to discover new ones. Translation-based embedding model (TransE) is a prominent formulation to do KG completion. Despite the efficiency of TransE in memory and time, it suffers from several limitations in encoding relation patterns such as symmetric, reflexive etc. To resolve this problem, most of the attempts have circled around the revision of the score function of TransE i.e., proposing a more complicated score function such as Trans(A, D, G, H, R, etc) to mitigate the limitations. In this paper, we tackle this problem from a different perspective. We show that existing theories corresponding to the limitations of TransE are inaccurate because they ignore the effect of loss function. Accordingly, we pose theoretical investigations of the main limitations of TransE in the light of loss function. To the best of our knowledge, this has not been investigated so far comprehensively. We show that by a proper selection of the loss function for training the TransE model, the main limitations of the model are mitigated. This is explained by setting upper-bound for the scores of positive samples, showing the region of truth (i.e., the region that a triple is considered positive by the model). Our theoretical proofs with experimental results fill the gap between the capability of translation-based class of embedding models and the loss function. The theories emphasise the importance of the selection of the loss functions for training the models. Our experimental evaluations on different loss functions used for training the models justify our theoretical proofs and confirm the importance of the loss functions on the performance.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.