Papers
Topics
Authors
Recent
2000 character limit reached

A Discriminative Neural Model for Cross-Lingual Word Alignment (1909.00444v1)

Published 1 Sep 2019 in cs.CL

Abstract: We introduce a novel discriminative word alignment model, which we integrate into a Transformer-based machine translation model. In experiments based on a small number of labeled examples (~1.7K-5K sentences) we evaluate its performance intrinsically on both English-Chinese and English-Arabic alignment, where we achieve major improvements over unsupervised baselines (11-27 F1). We evaluate the model extrinsically on data projection for Chinese NER, showing that our alignments lead to higher performance when used to project NER tags from English to Chinese. Finally, we perform an ablation analysis and an annotation experiment that jointly support the utility and feasibility of future manual alignment elicitation.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.