Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 108 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 205 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Improved Neural Baseline for Temporal Relation Extraction (1909.00429v1)

Published 1 Sep 2019 in cs.CL

Abstract: Determining temporal relations (e.g., before or after) between events has been a challenging natural language understanding task, partly due to the difficulty to generate large amounts of high-quality training data. Consequently, neural approaches have not been widely used on it, or showed only moderate improvements. This paper proposes a new neural system that achieves about 10% absolute improvement in accuracy over the previous best system (25% error reduction) on two benchmark datasets. The proposed system is trained on the state-of-the-art MATRES dataset and applies contextualized word embeddings, a Siamese encoder of a temporal common sense knowledge base, and global inference via integer linear programming (ILP). We suggest that the new approach could serve as a strong baseline for future research in this area.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.