Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Triclustering of Gene Expression Microarray Data Using Coarse-Grained Parallel Genetic Algorithm (1909.00237v1)

Published 31 Aug 2019 in cs.NE and q-bio.QM

Abstract: Microarray data analysis is one of the major area of research in the field computational biology. Numerous techniques like clustering, biclustering are often applied to microarray data to extract meaningful outcomes which play key roles in practical healthcare affairs like disease identification, drug discovery etc. But these techniques become obsolete when time as an another factor is considered for evaluation in such data. This problem motivates to use triclustering method on gene expression 3D microarray data. In this article, a new methodology based on coarse-grained parallel genetic approach is proposed to locate meaningful triclusters in gene expression data. The outcomes are quite impressive as they are more effective as compared to traditional state of the art genetic approaches previously applied for triclustering of 3D GCT microarray data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.