Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms (1909.00174v1)

Published 31 Aug 2019 in physics.soc-ph and cs.SI

Abstract: Link prediction is a significant and challenging task in network science. The majority of known methods are similarity-based, which assign similarity indices for node pairs and assume that two nodes of larger similarity have higher probability to be connected by a link. Due to their simplicity, interpretability and high efficiency, similarity-based methods, in particular those based only on local information, have already found successful applications on disparate fields. In this research domain, an intuitive consensus is that two nodes sharing common neighbors are very likely to have a link, while some recent evidences argue that the number of 3-hop paths more accurately predicts missing links than the number of common neighbors. In this paper, we implement extensive experimental comparisons between 2-hop-based and 3-hop-based similarity indices on 128 real networks. Our results indicate that the 3-hop-based indices perform slightly better with a winning rate about 55.88%, but which index is the best one still depends on the target network. Overall speaking, the class of Cannistraci-Hebb indices performs the best among all considered candidates.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.