Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

EnGN: A High-Throughput and Energy-Efficient Accelerator for Large Graph Neural Networks (1909.00155v3)

Published 31 Aug 2019 in cs.DC

Abstract: Graph neural networks (GNNs) emerge as a powerful approach to process non-euclidean data structures and have been proved powerful in various application domains such as social networks and e-commerce. While such graph data maintained in real-world systems can be extremely large and sparse, thus employing GNNs to deal with them requires substantial computational and memory overhead, which induces considerable energy and resource cost on CPUs and GPUs. In this work, we present a specialized accelerator architecture, EnGN, to enable high-throughput and energy-efficient processing of large-scale GNNs. The proposed EnGN is designed to accelerate the three key stages of GNN propagation, which is abstracted as common computing patterns shared by typical GNNs. To support the key stages simultaneously, we propose the ring-edge-reduce(RER) dataflow that tames the poor locality of sparsely-and-randomly connected vertices, and the RER PE-array to practice RER dataflow. In addition, we utilize a graph tiling strategy to fit large graphs into EnGN and make good use of the hierarchical on-chip buffers through adaptive computation reordering and tile scheduling. Overall, EnGN achieves performance speedup by 1802.9X, 19.75X, and 2.97X and energy efficiency by 1326.35X, 304.43X, and 6.2X on average compared to CPU, GPU, and a state-of-the-art GCN accelerator HyGCN, respectively.

Citations (125)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.