Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Inferences of Linear Forms for Noisy Matrix Completion (1909.00116v2)

Published 31 Aug 2019 in math.ST, cs.IT, cs.LG, math.IT, stat.ML, and stat.TH

Abstract: We introduce a flexible framework for making inferences about general linear forms of a large matrix based on noisy observations of a subset of its entries. In particular, under mild regularity conditions, we develop a universal procedure to construct asymptotically normal estimators of its linear forms through double-sample debiasing and low-rank projection whenever an entry-wise consistent estimator of the matrix is available. These estimators allow us to subsequently construct confidence intervals for and test hypotheses about the linear forms. Our proposal was motivated by a careful perturbation analysis of the empirical singular spaces under the noisy matrix completion model which might be of independent interest. The practical merits of our proposed inference procedure are demonstrated on both simulated and real-world data examples.

Citations (40)

Summary

We haven't generated a summary for this paper yet.