Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dense Dilated Convolutions Merging Network for Semantic Mapping of Remote Sensing Images (1908.11799v1)

Published 30 Aug 2019 in cs.CV, cs.LG, and eess.IV

Abstract: We propose a network for semantic mapping called the Dense Dilated Convolutions Merging Network (DDCM-Net) to provide a deep learning approach that can recognize multi-scale and complex shaped objects with similar color and textures, such as buildings, surfaces/roads, and trees in very high resolution remote sensing images. The proposed DDCM-Net consists of dense dilated convolutions merged with varying dilation rates. This can effectively enlarge the kernels' receptive fields, and, more importantly, obtain fused local and global context information to promote surrounding discriminative capability. We demonstrate the effectiveness of the proposed DDCM-Net on the publicly available ISPRS Potsdam dataset and achieve a performance of 92.3% F1-score and 86.0% mean intersection over union accuracy by only using the RGB bands, without any post-processing. We also show results on the ISPRS Vaihingen dataset, where the DDCM-Net trained with IRRG bands, also obtained better mapping accuracy (89.8% F1-score) than previous state-of-the-art approaches.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.