Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Some SonarQube Issues have a Significant but SmallEffect on Faults and Changes. A large-scale empirical study (1908.11590v1)

Published 30 Aug 2019 in cs.SE

Abstract: Context. Companies commonly invest effort to remove technical issues believed to impact software qualities, such as removing anti-patterns or coding styles violations. Objective. Our aim is to analyze the diffuseness of Technical Debt (TD) items in software systems and to assess their impact on code changes and fault-proneness, considering also the type of TD items and their severity. Method. We conducted a case study among 33 Java projects from the Apache Software Foundation (ASF) repository. We analyzed 726 commits containing 27K faults and 12M changes. The projects violated 173 SonarQube rules generating more than 95K TD items in more than 200K classes. Results. Clean classes (classes not affected by TD items) are less change-prone than dirty ones, but the difference between the groups is small. Clean classes are slightly more change-prone than classes affected by TD items of type Code Smell or Security Vulnerability. As for fault-proneness, there is no difference between clean and dirty classes. Moreover, we found a lot of incongruities in the type and severity level assigned by SonarQube. Conclusions. Our result can be useful for practitioners to understand which TD items they should refactor and for researchers to bridge the missing gaps. They can also support companies and tool vendors in identifying TD items as accurately as possible.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube