Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Power of Multiple Anonymous Messages (1908.11358v4)

Published 29 Aug 2019 in cs.CR, cs.DS, cs.LG, and stat.ML

Abstract: An exciting new development in differential privacy is the shuffled model, in which an anonymous channel enables non-interactive, differentially private protocols with error much smaller than what is possible in the local model, while relying on weaker trust assumptions than in the central model. In this paper, we study basic counting problems in the shuffled model and establish separations between the error that can be achieved in the single-message shuffled model and in the shuffled model with multiple messages per user. For the problem of frequency estimation for $n$ users and a domain of size $B$, we obtain: - A nearly tight lower bound of $\tilde{\Omega}( \min(\sqrt[4]{n}, \sqrt{B}))$ on the error in the single-message shuffled model. This implies that the protocols obtained from the amplification via shuffling work of Erlingsson et al. (SODA 2019) and Balle et al. (Crypto 2019) are essentially optimal for single-message protocols. A key ingredient in the proof is a lower bound on the error of locally-private frequency estimation in the low-privacy (aka high $\epsilon$) regime. - Protocols in the multi-message shuffled model with $poly(\log{B}, \log{n})$ bits of communication per user and $poly\log{B}$ error, which provide an exponential improvement on the error compared to what is possible with single-message algorithms. For the related selection problem on a domain of size $B$, we prove: - A nearly tight lower bound of $\Omega(B)$ on the number of users in the single-message shuffled model. This significantly improves on the $\Omega(B{1/17})$ lower bound obtained by Cheu et al. (Eurocrypt 2019), and when combined with their $\tilde{O}(\sqrt{B})$-error multi-message protocol, implies the first separation between single-message and multi-message protocols for this problem.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.