Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Uplink power control in cell-free massive MIMO via deep learning (1908.11121v1)

Published 29 Aug 2019 in cs.IT, eess.SP, and math.IT

Abstract: This paper focuses on the use of a deep learning approach to perform sum-rate-max and max-min power allocation in the uplink of a cell-free massive MIMO network. In particular, we train a deep neural network in order to learn the mapping between a set of input data and the optimal solution of the power allocation strategy. Numerical results show that the presence of the pilot contamination in the cell-free massive MIMO system does not significantly affect the learning capabilities of the neural network, that gives near-optimal performance. Conversely, with the introduction of the shadowing effect in the system the performance obtained with the deep learning approach gets significantly degraded with respect to the optimal one.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.