Papers
Topics
Authors
Recent
2000 character limit reached

High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm (1908.10859v2)

Published 28 Aug 2019 in stat.ML, cs.DS, cs.LG, math.OC, and stat.CO

Abstract: We propose a Markov chain Monte Carlo (MCMC) algorithm based on third-order Langevin dynamics for sampling from distributions with log-concave and smooth densities. The higher-order dynamics allow for more flexible discretization schemes, and we develop a specific method that combines splitting with more accurate integration. For a broad class of $d$-dimensional distributions arising from generalized linear models, we prove that the resulting third-order algorithm produces samples from a distribution that is at most $\varepsilon > 0$ in Wasserstein distance from the target distribution in $O\left(\frac{d{1/4}}{ \varepsilon{1/2}} \right)$ steps. This result requires only Lipschitz conditions on the gradient. For general strongly convex potentials with $\alpha$-th order smoothness, we prove that the mixing time scales as $O \left(\frac{d{1/4}}{\varepsilon{1/2}} + \frac{d{1/2}}{\varepsilon{1/(\alpha - 1)}} \right)$.

Citations (81)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.