Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm (1908.10859v2)

Published 28 Aug 2019 in stat.ML, cs.DS, cs.LG, math.OC, and stat.CO

Abstract: We propose a Markov chain Monte Carlo (MCMC) algorithm based on third-order Langevin dynamics for sampling from distributions with log-concave and smooth densities. The higher-order dynamics allow for more flexible discretization schemes, and we develop a specific method that combines splitting with more accurate integration. For a broad class of $d$-dimensional distributions arising from generalized linear models, we prove that the resulting third-order algorithm produces samples from a distribution that is at most $\varepsilon > 0$ in Wasserstein distance from the target distribution in $O\left(\frac{d{1/4}}{ \varepsilon{1/2}} \right)$ steps. This result requires only Lipschitz conditions on the gradient. For general strongly convex potentials with $\alpha$-th order smoothness, we prove that the mixing time scales as $O \left(\frac{d{1/4}}{\varepsilon{1/2}} + \frac{d{1/2}}{\varepsilon{1/(\alpha - 1)}} \right)$.

Citations (81)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.