Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Explore Entity Embedding Effectiveness in Entity Retrieval (1908.10554v1)

Published 28 Aug 2019 in cs.IR

Abstract: This paper explores entity embedding effectiveness in ad-hoc entity retrieval, which introduces distributed representation of entities into entity retrieval. The knowledge graph contains lots of knowledge and models entity semantic relations with the well-formed structural representation. Entity embedding learns lots of semantic information from the knowledge graph and represents entities with a low-dimensional representation, which provides an opportunity to establish interactions between query related entities and candidate entities for entity retrieval. Our experiments demonstrate the effectiveness of entity embedding based model, which achieves more than 5\% improvement than the previous state-of-the-art learning to rank based entity retrieval model. Our further analysis reveals that the entity semantic match feature effective, especially for the scenario which needs more semantic understanding.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.