Papers
Topics
Authors
Recent
2000 character limit reached

Linear Convergence of Adaptive Stochastic Gradient Descent (1908.10525v2)

Published 28 Aug 2019 in stat.ML, cs.LG, and math.OC

Abstract: We prove that the norm version of the adaptive stochastic gradient method (AdaGrad-Norm) achieves a linear convergence rate for a subset of either strongly convex functions or non-convex functions that satisfy the Polyak Lojasiewicz (PL) inequality. The paper introduces the notion of Restricted Uniform Inequality of Gradients (RUIG)---which is a measure of the balanced-ness of the stochastic gradient norms---to depict the landscape of a function. RUIG plays a key role in proving the robustness of AdaGrad-Norm to its hyper-parameter tuning in the stochastic setting. On top of RUIG, we develop a two-stage framework to prove the linear convergence of AdaGrad-Norm without knowing the parameters of the objective functions. This framework can likely be extended to other adaptive stepsize algorithms. The numerical experiments validate the theory and suggest future directions for improvement.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.