Papers
Topics
Authors
Recent
2000 character limit reached

TEST: an End-to-End Network Traffic Examination and Identification Framework Based on Spatio-Temporal Features Extraction (1908.10271v1)

Published 26 Aug 2019 in cs.CR and cs.LG

Abstract: With more encrypted network traffic gets involved in the Internet, how to effectively identify network traffic has become a top priority in the field. Accurate identification of the network traffic is the footstone of basic network services, say QoE, bandwidth allocation, and IDS. Previous identification methods either cannot deal with encrypted traffics or require experts to select tons of features to attain a relatively decent accuracy.In this paper, we present a Deep Learning based end-to-end network traffic identification framework, termed TEST, to avoid the aforementioned problems. CNN and LSTM are combined and implemented to help the machine automatically extract features from both special and time-related features of the raw traffic. The presented framework has two layers of structure, which made it possible to attain a remarkable accuracy on both encrypted traffic classification and intrusion detection tasks. The experimental results demonstrate that our model can outperform previous methods with a state-of-the-art accuracy of 99.98%.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.