Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DRD-Net: Detail-recovery Image Deraining via Context Aggregation Networks (1908.10267v2)

Published 27 Aug 2019 in eess.IV and cs.CV

Abstract: Image deraining is a fundamental, yet not well-solved problem in computer vision and graphics. The traditional image deraining approaches commonly behave ineffectively in medium and heavy rain removal, while the learning-based ones lead to image degradations such as the loss of image details, halo artifacts and/or color distortion. Unlike existing image deraining approaches that lack the detail-recovery mechanism, we propose an end-to-end detail-recovery image deraining network (termed a DRD-Net) for single images. We for the first time introduce two sub-networks with a comprehensive loss function which synergize to derain and recover the lost details caused by deraining. We have three key contributions. First, we present a rain residual network to remove rain streaks from the rainy images, which combines the squeeze-and-excitation (SE) operation with residual blocks to make full advantage of spatial contextual information. Second, we design a new connection style block, named structure detail context aggregation block (SDCAB), which aggregates context feature information and has a large reception field. Third, benefiting from the SDCAB, we construct a detail repair network to encourage the lost details to return for eliminating image degradations. We have validated our approach on four recognized datasets (three synthetic and one real-world). Both quantitative and qualitative comparisons show that our approach outperforms the state-of-the-art deraining methods in terms of the deraining robustness and detail accuracy. The source code has been available for public evaluation and use on GitHub.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.