Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Continually from Low-shot Data Stream (1908.10223v2)

Published 27 Aug 2019 in cs.LG and stat.ML

Abstract: While deep learning has achieved remarkable results on various applications, it is usually data hungry and struggles to learn over non-stationary data stream. To solve these two limits, the deep learning model should not only be able to learn from a few of data, but also incrementally learn new concepts from data stream over time without forgetting the previous knowledge. Limited literature simultaneously address both problems. In this work, we propose a novel approach, MetaCL, which enables neural networks to effectively learn meta knowledge from low-shot data stream without catastrophic forgetting. MetaCL trains a model to exploit the intrinsic feature of data (i.e. meta knowledge) and dynamically penalize the important model parameters change to preserve learned knowledge. In this way, the deep learning model can efficiently obtain new knowledge from small volume of data and still keep high performance on previous tasks. MetaCL is conceptually simple, easy to implement and model-agnostic. We implement our method on three recent regularization-based methods. Extensive experiments show that our approach leads to state-of-the-art performance on image classification benchmarks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube