Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Continually from Low-shot Data Stream (1908.10223v2)

Published 27 Aug 2019 in cs.LG and stat.ML

Abstract: While deep learning has achieved remarkable results on various applications, it is usually data hungry and struggles to learn over non-stationary data stream. To solve these two limits, the deep learning model should not only be able to learn from a few of data, but also incrementally learn new concepts from data stream over time without forgetting the previous knowledge. Limited literature simultaneously address both problems. In this work, we propose a novel approach, MetaCL, which enables neural networks to effectively learn meta knowledge from low-shot data stream without catastrophic forgetting. MetaCL trains a model to exploit the intrinsic feature of data (i.e. meta knowledge) and dynamically penalize the important model parameters change to preserve learned knowledge. In this way, the deep learning model can efficiently obtain new knowledge from small volume of data and still keep high performance on previous tasks. MetaCL is conceptually simple, easy to implement and model-agnostic. We implement our method on three recent regularization-based methods. Extensive experiments show that our approach leads to state-of-the-art performance on image classification benchmarks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.