Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Blended Convolution and Synthesis for Efficient Discrimination of 3D Shapes (1908.10209v2)

Published 24 Aug 2019 in cs.LG and stat.ML

Abstract: Existing networks directly learn feature representations on 3D point clouds for shape analysis. We argue that 3D point clouds are highly redundant and hold irregular (permutation-invariant) structure, which makes it difficult to achieve inter-class discrimination efficiently. In this paper, we propose a two-faceted solution to this problem that is seamlessly integrated in a single `Blended Convolution and Synthesis' layer. This fully differentiable layer performs two critical tasks in succession. In the first step, it projects the input 3D point clouds into a latent 3D space to synthesize a highly compact and more inter-class discriminative point cloud representation. Since, 3D point clouds do not follow a Euclidean topology, standard 2/3D Convolutional Neural Networks offer limited representation capability. Therefore, in the second step, it uses a novel 3D convolution operator functioning inside the unit ball ($\mathbb{B}3$) to extract useful volumetric features. We extensively derive formulae to achieve both translation and rotation of our novel convolution kernels. Finally, using the proposed techniques we present an extremely light-weight, end-to-end architecture that achieves compelling results on 3D shape recognition and retrieval.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.