Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

The many faces of deep learning (1908.10206v1)

Published 25 Aug 2019 in cs.LG, physics.data-an, q-bio.NC, and stat.ML

Abstract: Deep learning has sparked a network of mutual interactions between different disciplines and AI. Naturally, each discipline focuses and interprets the workings of deep learning in different ways. This diversity of perspectives on deep learning, from neuroscience to statistical physics, is a rich source of inspiration that fuels novel developments in the theory and applications of machine learning. In this perspective, we collect and synthesize different intuitions scattered across several communities as for how deep learning works. In particular, we will briefly discuss the different perspectives that disciplines across mathematics, physics, computation, and neuroscience take on how deep learning does its tricks. Our discussion on each perspective is necessarily shallow due to the multiple views that had to be covered. The deepness in this case should come from putting all these faces of deep learning together in the reader's mind, so that one can look at the same problem from different angles.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.