Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Fingerprint Presentation Attack Detection Based on Local Features Encoding for Unknown Attacks (1908.10163v1)

Published 27 Aug 2019 in cs.CV

Abstract: Fingerprint-based biometric systems have experienced a large development in the last years. Despite their many advantages, they are still vulnerable to presentation attacks (PAs). Therefore, the task of determining whether a sample stems from a live subject (i.e., bona fide) or from an artificial replica is a mandatory issue which has received a lot of attention recently. Nowadays, when the materials for the fabrication of the Presentation Attack Instruments (PAIs) have been used to train the PA Detection (PAD) methods, the PAIs can be successfully identified. However, current PAD methods still face difficulties detecting PAIs built from unknown materials or captured using other sensors. Based on that fact, we propose a new PAD technique based on three image representation approaches combining local and global information of the fingerprint. By transforming these representations into a common feature space, we can correctly discriminate bona fide from attack presentations in the aforementioned scenarios. The experimental evaluation of our proposal over the LivDet 2011 to 2015 databases, yielded error rates outperforming the top state-of-the-art results by up to 50\% in the most challenging scenarios. In addition, the best configuration achieved the best results in the LivDet 2019 competition (overall accuracy of 96.17\%).

Citations (47)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.