Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MIDAS: A Dialog Act Annotation Scheme for Open Domain Human Machine Spoken Conversations (1908.10023v1)

Published 27 Aug 2019 in cs.CL

Abstract: Dialog act prediction is an essential language comprehension task for both dialog system building and discourse analysis. Previous dialog act schemes, such as SWBD-DAMSL, are designed for human-human conversations, in which conversation partners have perfect language understanding ability. In this paper, we design a dialog act annotation scheme, MIDAS (Machine Interaction Dialog Act Scheme), targeted on open-domain human-machine conversations. MIDAS is designed to assist machines which have limited ability to understand their human partners. MIDAS has a hierarchical structure and supports multi-label annotations. We collected and annotated a large open-domain human-machine spoken conversation dataset (consists of 24K utterances). To show the applicability of the scheme, we leverage transfer learning methods to train a multi-label dialog act prediction model and reach an F1 score of 0.79.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Dian Yu (78 papers)
  2. Zhou Yu (206 papers)
Citations (40)

Summary

We haven't generated a summary for this paper yet.