Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unsupervised Deep Feature Transfer for Low Resolution Image Classification (1908.10012v2)

Published 27 Aug 2019 in cs.CV, cs.LG, and eess.IV

Abstract: In this paper, we propose a simple while effective unsupervised deep feature transfer algorithm for low resolution image classification. No fine-tuning on convenet filters is required in our method. We use pre-trained convenet to extract features for both high- and low-resolution images, and then feed them into a two-layer feature transfer network for knowledge transfer. A SVM classifier is learned directly using these transferred low resolution features. Our network can be embedded into the state-of-the-art deep neural networks as a plug-in feature enhancement module. It preserves data structures in feature space for high resolution images, and transfers the distinguishing features from a well-structured source domain (high resolution features space) to a not well-organized target domain (low resolution features space). Extensive experiments on VOC2007 test set show that the proposed method achieves significant improvements over the baseline of using feature extraction.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.