Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Macroscopic Modeling, Calibration, and Simulation of Managed Lane-Freeway Networks, Part II: Network-scale Calibration and Case Studies (1908.09953v1)

Published 26 Aug 2019 in eess.SY, cs.SY, and math.OC

Abstract: In Part I of this paper series, several macroscopic traffic model elements for mathematically describing freeway networks equipped with managed lane facilities were proposed. These modeling techniques seek to capture at the macroscopic the complex phenomena that occur on managed lane-freeway networks, where two parallel traffic flows interact with each other both in the physical sense (how and where cars flow between the two lane groups) and the physiological sense (how driving behaviors are changed by being adjacent to a quantitatively and qualitatively different traffic flow). The local descriptions we developed in Part I are not the only modeling complexity introduced in managed lane-freeway networks. The complex topologies mean that network-scale modeling of a freeway corridor is increased in complexity as well. The already-difficult model calibration problem for a dynamic model of a freeway becomes more complex when the freeway becomes, in effect, two interrelating flow streams. In the present paper, we present an iterative-learning-based approach to calibrating our model's physical and driver-behavioral parameters. We consider the common situation where a complex traffic model needs to be calibrated to recreate real-world baseline traffic behavior, such that counterfactuals can be generated by training purposes. Our method is used to identify traditional freeway parameters as well as the proposed parameters that describe managed lane-freeway-network-specific behaviors. We validate our model and calibration methodology with case studies of simulations of two managed lane-equipped California freeways.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube