Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A local Fourier analysis of additive Vanka relaxation for the Stokes equations (1908.09949v2)

Published 26 Aug 2019 in math.NA and cs.NA

Abstract: Multigrid methods are popular solution algorithms for many discretized PDEs, either as standalone iterative solvers or as preconditioners, due to their high efficiency. However, the choice and optimization of multigrid components such as relaxation schemes and grid-transfer operators is crucial to the design of optimally efficient algorithms. It is well--known that local Fourier analysis (LFA) is a useful tool to predict and analyze the performance of these components. In this paper, we develop a local Fourier analysis of monolithic multigrid methods based on additive Vanka relaxation schemes for mixed finite-element discretizations of the Stokes equations. The analysis offers insight into the choice of "patches" for the Vanka relaxation, revealing that smaller patches offer more effective convergence per floating point operation. Parameters that minimize the two-grid convergence factor are proposed and numerical experiments are presented to validate the LFA predictions.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.