Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An empirical comparison between stochastic and deterministic centroid initialisation for K-Means variations (1908.09946v6)

Published 26 Aug 2019 in cs.LG and stat.ML

Abstract: K-Means is one of the most used algorithms for data clustering and the usual clustering method for benchmarking. Despite its wide application it is well-known that it suffers from a series of disadvantages; it is only able to find local minima and the positions of the initial clustering centres (centroids) can greatly affect the clustering solution. Over the years many K-Means variations and initialisation techniques have been proposed with different degrees of complexity. In this study we focus on common K-Means variations along with a range of deterministic and stochastic initialisation techniques. We show that, on average, more sophisticated initialisation techniques alleviate the need for complex clustering methods. Furthermore, deterministic methods perform better than stochastic methods. However, there is a trade-off: less sophisticated stochastic methods, executed multiple times, can result in better clustering. Factoring in execution time, deterministic methods can be competitive and result in a good clustering solution. These conclusions are obtained through extensive benchmarking using a range of synthetic model generators and real-world data sets.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.