Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Ensemble approach for natural language question answering problem (1908.09720v2)

Published 26 Aug 2019 in cs.CL, cs.AI, and cs.LG

Abstract: Machine comprehension, answering a question depending on a given context paragraph is a typical task of Natural Language Understanding. It requires to model complex dependencies existing between the question and the context paragraph. There are many neural network models attempting to solve the problem of question answering. The best models have been selected, studied and compared with each other. All the selected models are based on the neural attention mechanism concept. Additionally, studies on a SQUAD dataset were performed. The subsets of queries were extracted and then each model was analyzed how it deals with specific group of queries. Based on these three model ensemble model was created and tested on SQUAD dataset. It outperforms the best Mnemonic Reader model.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.