Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improvability Through Semi-Supervised Learning: A Survey of Theoretical Results (1908.09574v3)

Published 26 Aug 2019 in cs.LG and stat.ML

Abstract: Semi-supervised learning is a setting in which one has labeled and unlabeled data available. In this survey we explore different types of theoretical results when one uses unlabeled data in classification and regression tasks. Most methods that use unlabeled data rely on certain assumptions about the data distribution. When those assumptions are not met in reality, including unlabeled data may actually decrease performance. Studying such methods, it therefore is particularly important to have an understanding of the underlying theory. In this review we gather results about the possible gains one can achieve when using semi-supervised learning as well as results about the limits of such methods. More precisely, this review collects the answers to the following questions: What are, in terms of improving supervised methods, the limits of semi-supervised learning? What are the assumptions of different methods? What can we achieve if the assumptions are true? Finally, we also discuss the biggest bottleneck of semi-supervised learning, namely the assumptions they make.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.