Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Constraint Learning for Control Tasks with Limited Duration Barrier Functions (1908.09506v3)

Published 26 Aug 2019 in eess.SY and cs.SY

Abstract: When deploying autonomous agents in unstructured environments over sustained periods of time, adaptability and robustness oftentimes outweigh optimality as a primary consideration. In other words, safety and survivability constraints play a key role and in this paper, we present a novel, constraint-learning framework for control tasks built on the idea of constraints-driven control. However, since control policies that keep a dynamical agent within state constraints over infinite horizons are not always available, this work instead considers constraints that can be satisfied over some finite time horizon T > 0, which we refer to as limited-duration safety. Consequently, value function learning can be used as a tool to help us find limited-duration safe policies. We show that, in some applications, the existence of limited-duration safe policies is actually sufficient for long-duration autonomy. This idea is illustrated on a swarm of simulated robots that are tasked with covering a given area, but that sporadically need to abandon this task to charge batteries. We show how the battery-charging behavior naturally emerges as a result of the constraints. Additionally, using a cart-pole simulation environment, we show how a control policy can be efficiently transferred from the source task, balancing the pole, to the target task, moving the cart to one direction without letting the pole fall down.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube