Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Comparison of CNN and Classic Features for Image Retrieval (1908.09300v1)

Published 25 Aug 2019 in cs.CV

Abstract: Feature detectors and descriptors have been successfully used for various computer vision tasks, such as video object tracking and content-based image retrieval. Many methods use image gradients in different stages of the detection-description pipeline to describe local image structures. Recently, some, or all, of these stages have been replaced by convolutional neural networks (CNNs), in order to increase their performance. A detector is defined as a selection problem, which makes it more challenging to implement as a CNN. They are therefore generally defined as regressors, converting input images to score maps and keypoints can be selected with non-maximum suppression. This paper discusses and compares several recent methods that use CNNs for keypoint detection. Experiments are performed both on the CNN based approaches, as well as a selection of conventional methods. In addition to qualitative measures defined on keypoints and descriptors, the bag-of-words (BoW) model is used to implement an image retrieval application, in order to determine how the methods perform in practice. The results show that each type of features are best in different contexts.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.