Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Accurate and Reliable Anomaly Detection for Gas Turbine Combustors: A Deep Learning Approach (1908.09238v1)

Published 25 Aug 2019 in cs.LG and stat.ML

Abstract: Monitoring gas turbine combustors health, in particular, early detecting abnormal behaviors and incipient faults, is critical in ensuring gas turbines operating efficiently and in preventing costly unplanned maintenance. One popular means of detecting combustor abnormalities is through continuously monitoring exhaust gas temperature profiles. Over the years many anomaly detection technologies have been explored for detecting combustor faults, however, the performance (detection rate) of anomaly detection solutions fielded is still inadequate. Advanced technologies that can improve detection performance are in great need. Aiming for improving anomaly detection performance, in this paper we introduce recently-developed deep learning (DL) in machine learning into the combustors anomaly detection application. Specifically, we use deep learning to hierarchically learn features from the sensor measurements of exhaust gas temperatures. And we then use the learned features as the input to a neural network classifier for performing combustor anomaly detection. Since such deep learned features potentially better capture complex relations among all sensor measurements and the underlying combustor behavior than handcrafted features do, we expect the learned features can lead to a more accurate and robust anomaly detection. Using the data collected from a real-world gas turbine combustion system, we demonstrated that the proposed deep learning based anomaly detection significantly indeed improved combustor anomaly detection performance.

Citations (143)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube