Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Universal Policies to Learn Them All (1908.09184v1)

Published 24 Aug 2019 in cs.MA and cs.LG

Abstract: We explore a collaborative and cooperative multi-agent reinforcement learning setting where a team of reinforcement learning agents attempt to solve a single cooperative task in a multi-scenario setting. We propose a novel multi-agent reinforcement learning algorithm inspired by universal value function approximators that not only generalizes over state space but also over a set of different scenarios. Additionally, to prove our claim, we are introducing a challenging 2D multi-agent urban security environment where the learning agents are trying to protect a person from nearby bystanders in a variety of scenarios. Our study shows that state-of-the-art multi-agent reinforcement learning algorithms fail to generalize a single task over multiple scenarios while our proposed solution works equally well as scenario-dependent policies.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.