Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Query-Based Named Entity Recognition (1908.09138v2)

Published 24 Aug 2019 in cs.CL

Abstract: In this paper, we propose a new strategy for the task of named entity recognition (NER). We cast the task as a query-based machine reading comprehension task: e.g., the task of extracting entities with PER is formalized as answering the question of "which person is mentioned in the text ?". Such a strategy comes with the advantage that it solves the long-standing issue of handling overlapping or nested entities (the same token that participates in more than one entity categories) with sequence-labeling techniques for NER. Additionally, since the query encodes informative prior knowledge, this strategy facilitates the process of entity extraction, leading to better performances. We experiment the proposed model on five widely used NER datasets on English and Chinese, including MSRA, Resume, OntoNotes, ACE04 and ACE05. The proposed model sets new SOTA results on all of these datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.