Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Fitness Functions for Machine Programming (1908.08783v5)

Published 22 Aug 2019 in cs.NE, cs.LG, and stat.ML

Abstract: The problem of automatic software generation is known as Machine Programming. In this work, we propose a framework based on genetic algorithms to solve this problem. Although genetic algorithms have been used successfully for many problems, one criticism is that hand-crafting its fitness function, the test that aims to effectively guide its evolution, can be notably challenging. Our framework presents a novel approach to learn the fitness function using neural networks to predict values of ideal fitness functions. We also augment the evolutionary process with a minimally intrusive search heuristic. This heuristic improves the framework's ability to discover correct programs from ones that are approximately correct and does so with negligible computational overhead. We compare our approach with several state-of-the-art program synthesis methods and demonstrate that it finds more correct programs with fewer candidate program generations.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com