Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Revisiting Wedge Sampling for Budgeted Maximum Inner Product Search (1908.08656v2)

Published 23 Aug 2019 in cs.DB and cs.IR

Abstract: Top-k maximum inner product search (MIPS) is a central task in many machine learning applications. This paper extends top-k MIPS with a budgeted setting, that asks for the best approximate top-k MIPS given a limit of B computational operations. We investigate recent advanced sampling algorithms, including wedge and diamond sampling to solve it. Though the design of these sampling schemes naturally supports budgeted top-k MIPS, they suffer from the linear cost from scanning all data points to retrieve top-k results and the performance degradation for handling negative inputs. This paper makes two main contributions. First, we show that diamond sampling is essentially a combination between wedge sampling and basic sampling for top-k MIPS. Our theoretical analysis and empirical evaluation show that wedge is competitive (often superior) to diamond on approximating top-k MIPS regarding both efficiency and accuracy. Second, we propose a series of algorithmic engineering techniques to deploy wedge sampling on budgeted top-k MIPS. Our novel deterministic wedge-based algorithm runs significantly faster than the state-of-the-art methods for budgeted and exact top-k MIPS while maintaining the top-5 precision at least 80% on standard recommender system data sets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.