Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Proximity and Structural Role-based Embeddings in Networks: Misconceptions, Techniques, and Applications (1908.08572v2)

Published 22 Aug 2019 in cs.SI and cs.LG

Abstract: Structural roles define sets of structurally similar nodes that are more similar to nodes inside the set than outside, whereas communities define sets of nodes with more connections inside the set than outside. Roles based on structural similarity and communities based on proximity are fundamentally different but important complementary notions. Recently, the notion of structural roles has become increasingly important and has gained a lot of attention due to the proliferation of work on learning representations (node/edge embeddings) from graphs that preserve the notion of roles. Unfortunately, recent work has sometimes confused the notion of structural roles and communities (based on proximity) leading to misleading or incorrect claims about the capabilities of network embedding methods. As such, this paper seeks to clarify the misconceptions and key differences between structural roles and communities, and formalize the general mechanisms (e.g., random walks, feature diffusion) that give rise to community or role-based structural embeddings. We theoretically prove that embedding methods based on these mechanisms result in either community or role-based structural embeddings. These mechanisms are typically easy to identify and can help researchers quickly determine whether a method preserves community or role-based embeddings. Furthermore, they also serve as a basis for developing new and improved methods for community or role-based structural embeddings. Finally, we analyze and discuss applications and data characteristics where community or role-based embeddings are most appropriate.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube