Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A General Analysis Framework of Lower Complexity Bounds for Finite-Sum Optimization (1908.08394v1)

Published 22 Aug 2019 in math.OC, cs.LG, and stat.ML

Abstract: This paper studies the lower bound complexity for the optimization problem whose objective function is the average of $n$ individual smooth convex functions. We consider the algorithm which gets access to gradient and proximal oracle for each individual component. For the strongly-convex case, we prove such an algorithm can not reach an $\varepsilon$-suboptimal point in fewer than $\Omega((n+\sqrt{\kappa n})\log(1/\varepsilon))$ iterations, where $\kappa$ is the condition number of the objective function. This lower bound is tighter than previous results and perfectly matches the upper bound of the existing proximal incremental first-order oracle algorithm Point-SAGA. We develop a novel construction to show the above result, which partitions the tridiagonal matrix of classical examples into $n$ groups. This construction is friendly to the analysis of proximal oracle and also could be used to general convex and average smooth cases naturally.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Guangzeng Xie (11 papers)
  2. Luo Luo (36 papers)
  3. Zhihua Zhang (118 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.