Papers
Topics
Authors
Recent
2000 character limit reached

A General Analysis Framework of Lower Complexity Bounds for Finite-Sum Optimization (1908.08394v1)

Published 22 Aug 2019 in math.OC, cs.LG, and stat.ML

Abstract: This paper studies the lower bound complexity for the optimization problem whose objective function is the average of $n$ individual smooth convex functions. We consider the algorithm which gets access to gradient and proximal oracle for each individual component. For the strongly-convex case, we prove such an algorithm can not reach an $\varepsilon$-suboptimal point in fewer than $\Omega((n+\sqrt{\kappa n})\log(1/\varepsilon))$ iterations, where $\kappa$ is the condition number of the objective function. This lower bound is tighter than previous results and perfectly matches the upper bound of the existing proximal incremental first-order oracle algorithm Point-SAGA. We develop a novel construction to show the above result, which partitions the tridiagonal matrix of classical examples into $n$ groups. This construction is friendly to the analysis of proximal oracle and also could be used to general convex and average smooth cases naturally.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.