Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Similarity Learning for Authorship Verification in Social Media (1908.07844v1)

Published 20 Aug 2019 in cs.CL, cs.LG, and stat.ML

Abstract: Authorship verification tries to answer the question if two documents with unknown authors were written by the same author or not. A range of successful technical approaches has been proposed for this task, many of which are based on traditional linguistic features such as n-grams. These algorithms achieve good results for certain types of written documents like books and novels. Forensic authorship verification for social media, however, is a much more challenging task since messages tend to be relatively short, with a large variety of different genres and topics. At this point, traditional methods based on features like n-grams have had limited success. In this work, we propose a new neural network topology for similarity learning that significantly improves the performance on the author verification task with such challenging data sets.

Citations (40)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.