Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Restricted Recurrent Neural Networks (1908.07724v4)

Published 21 Aug 2019 in cs.CL and cs.LG

Abstract: Recurrent Neural Network (RNN) and its variations such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), have become standard building blocks for learning online data of sequential nature in many research areas, including natural language processing and speech data analysis. In this paper, we present a new methodology to significantly reduce the number of parameters in RNNs while maintaining performance that is comparable or even better than classical RNNs. The new proposal, referred to as Restricted Recurrent Neural Network (RRNN), restricts the weight matrices corresponding to the input data and hidden states at each time step to share a large proportion of parameters. The new architecture can be regarded as a compression of its classical counterpart, but it does not require pre-training or sophisticated parameter fine-tuning, both of which are major issues in most existing compression techniques. Experiments on natural LLMing show that compared with its classical counterpart, the restricted recurrent architecture generally produces comparable results at about 50\% compression rate. In particular, the Restricted LSTM can outperform classical RNN with even less number of parameters.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.