Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Neural Machine Translation with Pre-trained Representation (1908.07688v1)

Published 21 Aug 2019 in cs.CL

Abstract: Monolingual data has been demonstrated to be helpful in improving the translation quality of neural machine translation (NMT). The current methods stay at the usage of word-level knowledge, such as generating synthetic parallel data or extracting information from word embedding. In contrast, the power of sentence-level contextual knowledge which is more complex and diverse, playing an important role in natural language generation, has not been fully exploited. In this paper, we propose a novel structure which could leverage monolingual data to acquire sentence-level contextual representations. Then, we design a framework for integrating both source and target sentence-level representations into NMT model to improve the translation quality. Experimental results on Chinese-English, German-English machine translation tasks show that our proposed model achieves improvement over strong Transformer baselines, while experiments on English-Turkish further demonstrate the effectiveness of our approach in the low-resource scenario.

Citations (6)

Summary

We haven't generated a summary for this paper yet.