Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DirectPET: Full Size Neural Network PET Reconstruction from Sinogram Data (1908.07516v4)

Published 19 Aug 2019 in eess.IV, cs.CV, and physics.med-ph

Abstract: Purpose: Neural network image reconstruction directly from measurement data is a relatively new field of research, that until now has been limited to producing small single-slice images (e.g., 1x128x128). This paper proposes a novel and more efficient network design for Positron Emission Tomography called DirectPET which is capable of reconstructing multi-slice image volumes (i.e., 16x400x400) from sinograms. Approach: Large-scale direct neural network reconstruction is accomplished by addressing the associated memory space challenge through the introduction of a specially designed Radon inversion layer. Using patient data, we compare the proposed method to the benchmark Ordered Subsets Expectation Maximization (OSEM) algorithm using signal-to-noise ratio, bias, mean absolute error and structural similarity measures. In addition, line profiles and full-width half-maximum measurements are provided for a sample of lesions. Results: DirectPET is shown capable of producing images that are quantitatively and qualitatively similar to the OSEM target images in a fraction of the time. We also report on an experiment where DirectPET is trained to map low count raw data to normal count target images demonstrating the method's ability to maintain image quality under a low dose scenario. Conclusion: The ability of DirectPET to quickly reconstruct high-quality, multi-slice image volumes suggests potential clinical viability of the method. However, design parameters and performance boundaries need to be fully established before adoption can be considered.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.