Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Latent-Variable Non-Autoregressive Neural Machine Translation with Deterministic Inference Using a Delta Posterior (1908.07181v5)

Published 20 Aug 2019 in cs.CL and cs.LG

Abstract: Although neural machine translation models reached high translation quality, the autoregressive nature makes inference difficult to parallelize and leads to high translation latency. Inspired by recent refinement-based approaches, we propose LaNMT, a latent-variable non-autoregressive model with continuous latent variables and deterministic inference procedure. In contrast to existing approaches, we use a deterministic inference algorithm to find the target sequence that maximizes the lowerbound to the log-probability. During inference, the length of translation automatically adapts itself. Our experiments show that the lowerbound can be greatly increased by running the inference algorithm, resulting in significantly improved translation quality. Our proposed model closes the performance gap between non-autoregressive and autoregressive approaches on ASPEC Ja-En dataset with 8.6x faster decoding. On WMT'14 En-De dataset, our model narrows the gap with autoregressive baseline to 2.0 BLEU points with 12.5x speedup. By decoding multiple initial latent variables in parallel and rescore using a teacher model, the proposed model further brings the gap down to 1.0 BLEU point on WMT'14 En-De task with 6.8x speedup.

Citations (114)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.