Papers
Topics
Authors
Recent
2000 character limit reached

Teacher-Student Framework Enhanced Multi-domain Dialogue Generation (1908.07137v2)

Published 20 Aug 2019 in cs.CL and cs.AI

Abstract: Dialogue systems dealing with multi-domain tasks are highly required. How to record the state remains a key problem in a task-oriented dialogue system. Normally we use human-defined features as dialogue states and apply a state tracker to extract these features. However, the performance of such a system is limited by the error propagation of a state tracker. In this paper, we propose a dialogue generation model that needs no external state trackers and still benefits from human-labeled semantic data. By using a teacher-student framework, several teacher models are firstly trained in their individual domains, learn dialogue policies from labeled states. And then the learned knowledge and experience are merged and transferred to a universal student model, which takes raw utterance as its input. Experiments show that the dialogue system trained under our framework outperforms the one uses a belief tracker.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.