Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Unpaired Image-to-Speech Synthesis with Multimodal Information Bottleneck (1908.07094v1)

Published 19 Aug 2019 in cs.CV

Abstract: Deep generative models have led to significant advances in cross-modal generation such as text-to-image synthesis. Training these models typically requires paired data with direct correspondence between modalities. We introduce the novel problem of translating instances from one modality to another without paired data by leveraging an intermediate modality shared by the two other modalities. To demonstrate this, we take the problem of translating images to speech. In this case, one could leverage disjoint datasets with one shared modality, e.g., image-text pairs and text-speech pairs, with text as the shared modality. We call this problem "skip-modal generation" because the shared modality is skipped during the generation process. We propose a multimodal information bottleneck approach that learns the correspondence between modalities from unpaired data (image and speech) by leveraging the shared modality (text). We address fundamental challenges of skip-modal generation: 1) learning multimodal representations using a single model, 2) bridging the domain gap between two unrelated datasets, and 3) learning the correspondence between modalities from unpaired data. We show qualitative results on image-to-speech synthesis; this is the first time such results have been reported in the literature. We also show that our approach improves performance on traditional cross-modal generation, suggesting that it improves data efficiency in solving individual tasks.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.