Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

PrivFT: Private and Fast Text Classification with Homomorphic Encryption (1908.06972v2)

Published 19 Aug 2019 in cs.CR and cs.LG

Abstract: The need for privacy-preserving analytics is higher than ever due to the severity of privacy risks and to comply with new privacy regulations leading to an amplified interest in privacy-preserving techniques that try to balance between privacy and utility. In this work, we present an efficient method for Text Classification while preserving the privacy of the content using Fully Homomorphic Encryption (FHE). Our system (named \textbf{Priv}ate \textbf{F}ast \textbf{T}ext (PrivFT)) performs two tasks: 1) making inference of encrypted user inputs using a plaintext model and 2) training an effective model using an encrypted dataset. For inference, we train a supervised model and outline a system for homomorphic inference on encrypted user inputs with zero loss to prediction accuracy. In the second part, we show how to train a model using fully encrypted data to generate an encrypted model. We provide a GPU implementation of the Cheon-Kim-Kim-Song (CKKS) FHE scheme and compare it with existing CPU implementations to achieve 1 to 2 orders of magnitude speedup at various parameter settings. We implement PrivFT in GPUs to achieve a run time per inference of less than 0.66 seconds. Training on a relatively large encrypted dataset is more computationally intensive requiring 5.04 days.

Citations (74)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.