Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Robust and Efficient Fuzzy C-Means Clustering Constrained on Flexible Sparsity (1908.06699v4)

Published 19 Aug 2019 in cs.LG and stat.ML

Abstract: Clustering is an effective technique in data mining to group a set of objects in terms of some attributes. Among various clustering approaches, the family of K-Means algorithms gains popularity due to simplicity and efficiency. However, most of existing K-Means based clustering algorithms cannot deal with outliers well and are difficult to efficiently solve the problem embedded the $L_0$-norm constraint. To address the above issues and improve the performance of clustering significantly, we propose a novel clustering algorithm, named REFCMFS, which develops a $L_{2,1}$-norm robust loss as the data-driven item and imposes a $L_0$-norm constraint on the membership matrix to make the model more robust and sparse flexibly. In particular, REFCMFS designs a new way to simplify and solve the $L_0$-norm constraint without any approximate transformation by absorbing $|\cdot|_0$ into the objective function through a ranking function. These improvements not only make REFCMFS efficiently obtain more promising performance but also provide a new tractable and skillful optimization method to solve the problem embedded the $L_0$-norm constraint. Theoretical analyses and extensive experiments on several public datasets demonstrate the effectiveness and rationality of our proposed REFCMFS method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.