Emergent Mind

Towards Assessing the Impact of Bayesian Optimization's Own Hyperparameters

(1908.06674)
Published Aug 19, 2019 in cs.LG , cs.AI , and stat.ML

Abstract

Bayesian Optimization (BO) is a common approach for hyperparameter optimization (HPO) in automated machine learning. Although it is well-accepted that HPO is crucial to obtain well-performing machine learning models, tuning BO's own hyperparameters is often neglected. In this paper, we empirically study the impact of optimizing BO's own hyperparameters and the transferability of the found settings using a wide range of benchmarks, including artificial functions, HPO and HPO combined with neural architecture search. In particular, we show (i) that tuning can improve the any-time performance of different BO approaches, that optimized BO settings also perform well (ii) on similar problems and (iii) partially even on problems from other problem families, and (iv) which BO hyperparameters are most important.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.