Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Energized simplicial complexes (1908.06563v1)

Published 19 Aug 2019 in math.CO and cs.DM

Abstract: For a simplicial complex with n sets, let W-(x) be the set of sets in G contained in x and W+(x) the set of sets in G containing x. An integer-valued function h on G defines for every A subset G an energy E[A]=sum_x in A h(x). The function energizes the geometry similarly as divisors do in the continuum, where the Riemann-Roch quantity chi(G)+deg(D) plays the role of the energy. Define the n times n matrices L=L--(x,y)=E[W-(x) cap W-(y)] and L++(x,y) = E[W+(x) cap W+(y)]. With the notation S(x,y)=1_n omega(x) =delta(x,y) (-1)dim(x) and str(A)=tr(SA) define g=S L++ S. The results are: det(L)=det(g) = prod_x in G h(x) and E[G] = sum_x,y g(x,y) and E[G]=str(g). The number of positive eigenvalues of g is equal to the number of positive energy values of h. In special cases, more is true: A) If h(x) in -1, 1}, the matrices L=L--,L++ are unimodular and L-1 = g, even if G is a set of sets. B) In the constant energy h(x)=1 case, L and g are isospectral, positive definite matrices in SL(n,Z). For any set of sets G we get so isospectral multi-graphs defined by adjacency matrices L++ or L-- which have identical spectral or Ihara zeta function. The positive definiteness holds for positive divisors in general. C) In the topological case h(x)=omega(x), the energy E[G]=str(L) = str(g) = sum_x,y g(x,y)=chi(G) is the Euler characteristic of G and phi(G)=prod_x omega(x), a product identity which holds for arbitrary set of sets. D) For h(x)=t|x| with some parameter t we have E[H]=1-f_H(t) with f_H(t)=1+f_0 t + cdots + f_d td+1 for the f-vector of H and L(x,y) = (1-f_W-(x) cap W-(y)(t)) and g(x,y)=omega(x) omega(y) (1-f_W+(x) cap W+(y)(t)). Now, the inverse of g is g-1(x,y) = 1-f_W-(x) cap W-(y)(t)/tdim(x cap y) and E[G] = 1-f_G(t)=sum_x,y g(x,y).

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com